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The one-dimensional boson gas with 6-function interaction is modified to 
include arbitrary pseudopotential interaction. The system is shown to be 
solvable by the Bethe Ansatz for certain classes of pseudopotential. 

KEY WORDS: Bose gas;  one-dimensional fluid; point interaction; 
pseudopotential; Bethe Ansatz. 

1. I N T R O D U C T I O N  

In the theory of Bose fluids, exactly soluble model systems are unfor- 
tunately rare. Of the few many-body Hamiltonians which allow exact solu- 
tion, the one-dimensional Bose gas with 6-function pair interaction has 
perhaps the most  realistic pair potential. In the case of impenetrable point 
particles, Girardeau (1) showed that the energy spectrum was identical to 
that of the free Fermi gas. Subsequently, Lieb and Liniger (2) extended the 
solution to include 6-function pair interaction, for any fixed, positive 
6-function strength. This resulted in a one-parameter family of solutions, 
the extremes of which were, respectively, the impenetrable case of 
Girardeau and the completely free-particle case. Lieb and Liniger ~3) further 
showed that there appeared to be two excitation spectra associated with 
the gas, an interesting and rather unexpected result. The T >  0 case was 
subsequently analyzed by Yang and Yang, ~5~ who also showed the com- 
pleteness of the states obtained by the Bethe Ansatz. (4) Several reviews of 
various aspects of the Bethe Ansatz along with extensive bibliographies 
may be found in ref. 8. 
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In this paper we further extend the boson model to include arbitrary 
pseudopotential interaction. That is, we shall show that the Bethe Ansatz 
yields a solution to the model equation 

i = l  i > j  n 

= E~(X 1 ,..., xu) (1) 

Here the pair potential may be regarded as a form of pseudopotential, 
where the even derivatives in the potential act to "tune" the effective 
delta-function strength according to the relative "velocities" of the inter- 
acting particles. The above "potential" as it stands is not Hermitian, or 
even well defined. It is to be interpreted by carrying out the derivatives to 
the right of xi = xj. From the symmetry of the Bose wave function, this is 
identical with averaging the derivatives to the right and to the left, and 
then indeed the potential becomes Hermitian. 

A motivation for considering (1) is that we may choose the coefficients 
of the pseudopotential to imitate real finite-range potentials. In such cases 
Eq. (1) would be valid as a dilute-limit approximation to the actual 
potential. 

In the next section we state the Lieb result for bosons with fixed 
6-function strength, and then interpret this from a scattering viewpoint. 
This will allow us to write down the form of the solutions to (1) 
immediately. In Section 3 we solve explicitly a restriction of (1), to verify 
the simple picture invoked in the second section. In Section 4 we show that 
the Bethe Ansatz works in general for Eq. (1), and in Section 5 we discuss 
conditions necessary for the completeness of states. 

2. THE SCATTERING PICTURE 

The ground-state energy of a system of N bosons with repulsive 
6-function interaction in one dimension was calculated by Lieb and 
Liniger. ~2) The Hamiltonian for the system is, for c > 0, 

N (~2 

H =  - ~ ~ + c  ~ 6 ( x , - x i )  (2) 
i = 1  G X i  i> j 

where the units are chosen so that h = 2m = 1. Using Bethe's hypothesis, ~4) 
Lieb and Liniger showed that the wave vectors k of the hypothesis must 
satisfy 

( - -1 )  (N t ) e x p ( - i k L ) = e x p l i ~ O ( k ' - k ) ] ,  (3) 
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where, for - r~ ~< 0 ~< ~z, 

O(k) = - 2  a r c t a n ( k / c )  (4) 

Here the length of the periodic box is L. 
Equation (3) is obtained by imposing periodic boundary conditions 

on the N-particle system, which itself has a large set of "internal boun- 
daries" corresponding to hyperplanes of particle pair interaction. At first 
sight it appears somewhat miraculous that the internal boundary condi- 
tions may be satisfied by a wavefunction of the Bethe form [see Eq. (27)]. 
That is, one would normally expect diffraction to occur. (McGuire (6,v) has 
examined the three-particle case in detail and has established general 
conditions for the appearence of diffraction. The equal mass fixed-strength 
delta-function case was shown to be diffractionless.) However, the sim- 
plicity of the final result (3) for the N-particle case suggests that there is, 
perhaps, a simple mechanism at the root of the problem which may be 
amenable to generalization. In this section we shall, for the time being, set 
aside details, and propose a simple picture to motivate an extension of 
Eq. (3) to other potentials. 

Let us consider the simple system of a single particle in a periodic box 
of length L, with a single delta-function scattering center at x =  0. The 
stationary solutions will be superpositions of left and right incident waves 
tp and tp +, respectively, with 

= ~ e T - i k X + r e  +-i~x, +_x>~O 

0 •  ~ te~i~x ,  _+x<O 
(5) 

where r and t are the reflection and transmission coefficients, respectively. 
The continuity of ~ at x = 0 ,  periodicity, and the condition 
~ ' ( 0 + ) - ~ ' ( 0 - ) = 2 c ~ ( 0 )  require that the left and right incident waves 
have equal amplitude and that 

c 

- ik  - c (6) 

ik  
t - ik  - c (7) 

o r  

r + t = -exp(i0k) (8) 

where 

Ok = - -2  a r c t a n ( k / c )  
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The scattering "picture" we use is as follows. Stationary solutions of the 
particle in a box consist of pairs of waves moving in opposite directions. 
Each wave experiences a phase shift Ok + rc when passing the scattering 
center at x = O. Thus, for example, the periodic boundary condition e ikL = 1 
for k would be modified by the presence of a scatterer to read 

e i ( k L  + Ok) = _ 1 

Notice that this would also be the case if O(x) represented the wavefunc- 
tion of the relative coordinates of two identical bosons. 

Let us carry this "picture" over to the case of N = 2n point bosons in 
a box. We suppose that there are N waves present with wave numbers 
{k~, i =  1 ..... N}. In the absence of interaction, the kj satisfy the periodic 
boundary conditions e ~kjr = 1. However, with interaction each wave kj feels 
the presence of ( 2 n - 1 )  scattering centers with relative wavenumbers 
{kj-k~},  and the boundary condition for kj becomes simply 

-exp(-ikjL)=exp [i~ O(k~-kj)] (9) 

This is just the relation (3), for even N. [-For odd N the wave kj 
scatters off an even number of particles in one period and the factors of - 1 
in Eq. (8) cancel, removing the minus sign from (9).] 

The simplicity of the above picture lies in the fact that each "wave" kj 
treats every other wave k i as an independent scattering center with relative 
wavenumber (k i -k i ) .  Neither the position nor the relative ordering of the 
particles is relevant to this discription. This suggests that if we keep point 
particle interaction, with a potential strength dependent only on the 
relative velocities of the particles, Eq. (9) should remain correct with a 
suitable redifinition of 0. 

This is in fact the case. However, to illustrate some of the details 
involved, we consider the example of a three-particle system with a 
second-order potential. 

3. A T H R E E - P A R T I C L E  P R O B L E M  

The heuristic picture sketched above iridicates that if the Bethe Ansatz 
works for a potential, then the distribution of k's will be determined by the 
phase relation (3). On the other hand, the picture also suggests that the 
Ansatz should work, provided that the scattering conditions apply only on 
the interaction hyperplanes, and that they depend only on relative 
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wavenumber. To see that this is actually the case, it is helpful to solve a 
simple system in detail. We shall consider the Hamiltonian 

H =  - -  ~Xi"{ ' -C[(~(XI - -X2) - '~ (~(X2- -X3)"~) (X3- -Xl ) ' ]  
i = 1  

+ d Sx, (10) 
i < j  �9 

The boundary conditions resulting from integrating across the hyperplane 
xj  = x i  are then 

0 2 

We now assume a solution in RI: 0 ~< xl ~< x2 ~< x3 ~< L of the form 

r = ei(klX~ + k2x2 + k3:,3) + a(213) e ~(k2x' + klx2 + k3~) 

+ a(231 ) e i(k2xt +k3x2 + k1~3) 

+ a(321 ) e ~(k3x' + k2),2 + k~,3) + a(312) e i(k3~1 + k~ ~2 + k2x3) 

+ a(132) e i(k'~'' + k3~,2 +k2x3) 

-- e~ + a(213) e2 + a(231) e3 + a(321) e4 + a(312) e s + a(132) e 6 (12) 

Here we have written the coefficients according to the permutation of 
the k's in the accompanying exponentials, and shortened the notation in an 
obvious way. We now further assume that the coefficients may be expressed 
as products of nearest neighbor interchange coefficients, where nearest 
neighbor exchange corresponds to simply transposing a single adjacent pair 
of k's. That  is, we suppose that we may write 

a ( 2 1 3 ) = a ( 2 1 )  

a ( 2 3 1 ) = a ( 2 1 ) a ( 3 1 )  

a (321)=a (21)  a(31)a(32)  

a ( 3 1 2 ) = a ( 2 1 ) a ( 3 1 ) a ( 3 2 )  a(12) 

a ( 1 3 2 ) = a ( 2 1 ) a ( 3 1 ) a ( 3 2 ) a ( 1 2 ) a ( 1 3 )  

If we require that a(ij') a ( j i )  = 1, our assumed form for r is 

~'(xl, x2, x3) = el + a(21) e2 + a(21) a(31) e 3 

+ a(21) a(31) a(32) e~ + a(31) a(32) e 5 + a(32) e 6 

(13) 

(14) 

822/56/5-6-9 
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We now apply the boundary condition (11) at X l = X 2 = X .  Using the 
notation 

e l  . _~ e i [  (kl + k2)x  + k3x3], 

e 5  .= e i [ ( k l  + k3)x  + k2x3] 

e 3  = e i [ (k2  + k3)x  + klx3] 

(15) 

we calculate and collect derivatives. The left-hand side of (11) becomes 

i { ( k 2 -  kl)[1 - a(21)] el. + a(21) a(31)(k3 - k2)[1 - a(32)] e3. 

+ a(32)(k 3 - kl)[1 - a(31)] es.} 

The right-hand side is 

[c - d(k2 - k l )2]  [ 1 + a(21 )] el. + a(21 ) a(31 )[c - d(k  3 - k2) 2 ] e3. 

+ a(32)[c - d(k3 - k~)2] [ 1 + a(31 )] e5. 

Since the ei. are linearly independent, we must have, for example, 

i ( k 2 - k l ) [ l  - a(21)] = [ c - d ( k z - k l ) 2 ] [ 1  + a(21)] 

or  

i (k  2 - k , )  - [ c -  d(k2 - k 1)2] 

a(21) - i(k2 - k l )  + [ c - d ( k 2 - k , )  2] (16) 

The two remaining coefficients may be obtained similarly, and the result is 

a( ij) = i ( k i -  k j)  - [ c - d ( k ~ -  kj) 2 ] (17) 
i ( k , -  k j)  + [ c - d ( k ~ -  kj) 2 ] 

The other "internal" boundary in R1, namely the hyperplane x 2 = x 3 ,  
yields the same coefficients. 

Comparing Eq. (17) to the fixed-strength case, which was 

ao(/j) = c - i ( k , -  k j)  (18) 
c + i ( k i -  k j)  

we see that a change from a potential c ~ i > j  6 ( x e - x j )  to a potential 

c 2 a(x,-  xj) + d 2 a(xi- xj) 
i > j  i > j  

simply changes the constant c 

"constant" c ~ c - dk  2. 
in the phase factor to the k-dependent 
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So far we have verified that the solution assumed in (16) does in fact 
conform to the boundary condition (11) provided that the a(/j) are given 
by (17). That is, we have found a functional form for ~ that will satisfy the 
internal boundary conditions for any nondegenerate set of k's. 

The "external" boundary conditions in R1 must also be satisfied, i.e., 

ffJ(O, X2, X3) = ff/(X2, X3, L) (19) 

0 X2' X3) xl =0 + a ) xl •X 1 I//(Xl, (~Xl 0(x2, x3, xl =L- (20) 

Substituting (16) into the boundary condition (19) and equating coef- 
ficients, we find 

e-ik,L=a(21) a(31) 
e -ik2L = a(12) a(32) (21) 

e -ik3L = a(13) a(23) 

Similarly, the second condition (20) generates the same relations. 
Now Eq. (17) may be rewritten 

a ( O ' )  = - e  '~ 

where 

and (22) becomes 

Gj=-2arctan(e ki-kj 

exp(-ikiL)=exp (~j 0~) 

(22) 

(23) 

which is just (3), as expected. 
Thus, the simple scattering picture holds for the three-particle case 

where the interparticle potential contains a second-order term. 

4. T H E  N - P A R T I C L E  C A S E  

Returning to the N-particle equation (1), we note that we may restrict 
our attention to the region Rl:O<~xl<~x2<<.... <<.xN, the remaining 
regions being implicitly defined through Bose symmetry. Inside R1, 
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satisfies the free-particle equation. On the "internal" boundaries the poten- 
tials give rise to the boundary conditions 

~3x7+, , ~ j j  ~(Xl, xz,..., xN) = 0 (24) 

The periodic boundary conditions may be expressed in R~ as 

~l(O, X 2 ..... X N )  ~" ~I(X 2,..., X N ,  L) 

and 

(25) 

X l ' X 2  ..... XN) =O--X~I(XI '""XN' 'X) x=L (26) 

We now make the Ansatz that, for some ordered set I =  { k l ,  k 2 ..... kN} of 
distinct wavenumbers, the wavefunction is given by 

~(xl' x2'"" XN)= ~ A(P) exp [ a ke(y)xj] (27) 

where Z e  sums over all permutations of the set of wavenumbers, A(P) is 
the amplitude associated with the permutation P, and the argument of the 
exponential is a sum over the permuted set of wavenumbers. 

Now the internal boundary conditions (24) relate the components of 
through adjacent transpositions of the sets P. That is, suppose 

P={k~,...,p,q ..... k~u } 

and 

Q={k~l,...,q,p ..... k, u} 

differ only through the transposition of adjacent elements p and q at posi- 
tions j and j + 1, respectively. Then Eq. (24) requires that 

i(q- p)[A(P)- A(Q) ] exp li(p + q)x + ~ k~,xi ] 

= ~  c , ( -  1)" (q_p)2, [A(P)+A(Q)] 
n 
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where the sum on the exponentials is over all k~, r q, p. Canceling the 
exponentials, we are left with 

A(Q) ~2 ( - 1 )  n c , ( p - q ) 2 " - i ( q - P )  
A(P) =- a(p, q) = y, ( _ 1 )n cn(p - q)2, + i(q - p) (29) 

Now the above equation relates only adjacent transpositions such as P and 
Q. If we define 

A(I) = 1 (30) 

where ! is the set of wavevectors in its natural order, we may clearly define 
A(P) to be the product of amplitudes along a path of adjacent transposi- 
tions from I to P. That is, if (p~, ql), (P2, q2) ..... (P,, qn) is a sequence of 
adjacent transpositions taking I to P, then we may define A to be 

A(P) = a(p~, q~) a(p2, q2)"" a(p,,  q,) 

However, there are many paths in permutation space from I to P and we 
must ensure that the A(P) are unique. To see that they are in fact unique, 
suppose that P1 and P2 are two different "paths" from I to P. If A(P1) and 
A(P2) are the respective amplitudes, then since 

P, = P,(P2tP2)= (PtP2*) P2 

we must have 

A(P1P~_ 1 ) = / / ( P l )  A(P~ ~ ) = 1 

That is, for A(P) to be uniquely defined by (29) and (30), A(L) must be 
unity for all closed paths L which take a permutation into itself. For 
example, Fig. 1 shows an adjacent transposition loop for a set of four k's. 
Tracing the trajectory of any k in such a loop, it is apparent that if the path 
for k~, say, crosses the path for k2, then it will do so an even number of 
times, alternating in its direction of approach. Each such intersection will 
contribute a factor of a(kl,  k2) or a(k2, kl), respectively, corresponding to 
an approach from the left or the right. Since the intersections are paired, 
the final product is necessarily unity provided that 

a(p, q) a(q, p) = 1 

However, this is clearly the case, as may be seen from the definition (29). 
Thus, provided that the k's are distinct, the assumed solution (27) satisfies 
the internal boundary conditions, provided that the amplitudes are chosen 
according to Eq. (29). 



690 Ord and Percus 

Fig. 1. A closed loop of adjacent transpositions. 

The effect of the periodic boundary conditions (26) may be obtained 
by substituting (27) into (26), which results in the requirement 

If we write 

where 

for 

(__1)N--1 e - ~ L =  [ I  a(kjk.)  (31) 
n # j  

a(p, q) = - exp [  - i ~ ( p  - q)] 

-x~<~<x 

(32) 

(33) 
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then Eq. (31) becomes 

(-1)N-' exp(-ikjL )=exp [~ O(kn-kj) ] (34) 

This is precisely the relation (31) of Lieb and Liniger, (z) where, in this 
context, 0 is given by the function (33). 

Thus the Bethe Ansatz does provide a solution to the Hamiltonian of 
Eq. (1). In the following section we shall discuss conditions under which 
the Ansatz provides a basis for all states. 

5. T H E  B A S I S  O F  S T A T E S  

Having established that the Bethe hypothesis provides solutions to the 
model equations, we would like to find conditions under which all solu- 
tions are found this way. Although the following argument is not rigorous, 
it is suggestive that a large class of pseudopotentials are completely covered 
by the Ansatz. 

Following the work of Yang and Yang, (5) we take the logarithm of 
(33) to find 

kjL = 2,~Ij + y, 0 (k j -  k') (35) 
k '  

where/a, is integer or half integer, respectively, for odd or even N. Writing 

O(k ) = f~ O(x) dx (36) 

and defining 

k 1 n N 1~. O(kj-kz) (37) B(k~,..., N)=2L Z k}-- 2~ ~ 2 j , 

we note that Eq. (35) is the extremum condition for (37). However, the 
second derivative matrix of B is 

OZB = 6jl I L -  ~ O'(kj- ks) ] + O'(kj- kt) (38) 
8kj 8kl 

Let us suppose that - 0 '  is nonnegative. The second derivative matrix B" 
is then positive definite. Thus, since for large k, B ~ L Y. k 2, then for any set 
of numbers {Ii}, the extremum given by (35) is a minimum, and is unique. 
Now if, in the general potential of Eq. (1) we set Co1= 0, then we have the 
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impenetrable particle case. Since dk/dc-1 is continuous for c > 0, provided 
that when we move c o 1 to a finite, positive target value, the positivity of 
B" is not violated, then, as in the fixed delta-function case, we expect the 
completeness of the set of Bethe eigenfunctions to follow. 

Now, nonnegativity of 0' places a restriction on the class of pseudo- 
potentials for which we can be reasonably certain of the completeness of 
states. However, even with this restriction we may investigate some new 
qualitative features. For  example, if we consider the pseudopotential of 
Eq. (1) with Co, c 1 > 0  and cn=0,  n > 2 ,  we see that the net effect at high 
k is that of attraction. However, we have already seen from the 
three-particle case that ~ is given by Eq. (22), so that 

Co + 3dk2 (39) 
O'(k) = - 2  k2 + (Co _ dk2) 2 

is nonpositive and hence completely amenable to the Bethe Ansatz. In a 
subsequent publication we shall investigate numerically the effects of such 
attractions on the ground state and excitations. 

McGuire (personal communication) has suggested that the non- 
potential nature of (1) makes the completeness argument suspect; our 
conclusions as to completeness must be regarded as tentative. 

6. D I S C U S S I O N  

We have introduced a simplified scattering picture of a one-dimen- 
sional Bose fluid in which the interparticle potential has zero range and is 
velocity dependent. This picture is not exactly new. McGuire ~6) has used a 
similar approach involving ray tracing and an electromagnetic analogy. An 
even closer physical picture may be found in the work of Sutherland. ~8) The 
primary novelty of our approach is the extension of the delta-function 
interaction to potentials with velocity-dependent strengths. This provides a 
new class of exactly solvable mode!s which should serve as a good testing 
ground for approximation methods. 
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